The Seasonality of Conflict*

Jenny Guardado† and Steven Pennings‡

This Draft: April 2017

April 7, 2017

Abstract

Despite being among the most popular explanation of conflict, there is little consensus as to whether conflict activities are less likely when the returns to working are higher. In this paper, we exploit the seasonality of agricultural labor markets to estimate this trade-off. Relying on a dynamic model of labor supply, we first demonstrate that exogenous, anticipated, and transitory changes in labor demand due to harvest are better able to capture the opportunity cost of conflict relative to other shocks commonly analyzed in the literature. This is because seasonal shocks hold constant other drivers of conflict which systematically bias empirical estimates leading to seemingly contradictory results. Indeed, using data from different conflict settings – Afghanistan, Iraq, and Pakistan – and exploiting subnational variation in crop calendars and production, we find that harvest onset usually leads to a statistically significant reduction in the share of monthly insurgent attacks.

*We are grateful for comments from Scott Ashworth, Eli Berman, Ethan Bueno de Mesquita, Anthony Fowler, Noel Maurer, and participants of the Third Formal & Comparative Conference (Becker-Friedman Institute); World Bank MENA Seminar Series; Harris School of Public Policy Political Economy Lunch; the 2015 HICN (Households in Conflict Network) conference; the Georgetown Political Economy & Development Seminars; and the 2016 Warwick-Princeton Political Economy Workshop. We thank financial support from Ethan Bueno de Mesquita and the Office of Naval Research; and are grateful to Paula Ganga, Jeong Whan Park, Marissa Barragan and Saisha Mediratta for their research assistance.

†Assistant Professor, Georgetown University. jennyguardado@gmail.com. Project developed while visiting the Harris School of Public Policy University of Chicago (2014-2015).

‡Research Economist, World Bank Research Department spennings@worldbank.org. The views expressed here are the authors’, and do not necessarily reflect those of the World Bank, its Executive Directors, or the countries they represent.
1 Introduction

Understanding why civil conflict takes place is of utmost policy importance for the developing world given its toll on human lives, human capital, and broader development prospects. The current view among international institutions such as the World Bank, academics, and even public opinion\(^1\) is that economic factors such as poverty and unemployment are among the main drivers of conflict. Indeed, a number of theoretical (Becker 1968; Grossman 1991; Dal Bo and Dal Bo 2011) and empirical studies establish a connection between the returns to working and the intensity of conflict – implying that better wages or job prospects increase the opportunity cost of fighting versus working. Typically, these studies show that negative income shocks driven by rainfall (Miguel et. al. 2004) or commodity prices (Dube and Vargas 2013; Guardado 2016; Hodler and Raschky 2014, among others) are associated with an increase in the likelihood and intensity of civil conflict. Yet, despite this evidence, other studies question both the strength and interpretation of the relationship between economic factors and conflict (Blattman and Bazzi 2014; Berman et. al. 2011b) and whether economic considerations are an important driver of civilian participation in conflict altogether (Berman et. al. 2011a).

In this paper, we make two arguments: first, we show that these conflicting empirical findings on the opportunity cost mechanism are likely driven by the type of income shocks commonly analyzed in the literature. We demonstrate that when income shocks are highly persistent it leads to empirical results which systematically underestimate the strength of the opportunity cost mechanism. This is the case of income shocks driven by commodity prices — which tend to be persistent. Indeed, simulation data from different theoretical models shows that regressions estimates of the opportunity cost mechanism are systematically upward biased and could range from the negative to the positive depending on the degree of persistence. This range of estimates is consistent with the mixed empirical results in the literature and the ambiguity over the impact of income shocks documented in landmark models of conflict (Fearon 2008). These findings also suggest that the opportunity cost effect captured by commodity prices is likely to be even stronger (or more negative) than shown in current studies (e.g. Dube and Vargas 2013; Blattman and Bazzi 2014; Guardado 2016; Hodler and Raschky 2014, etc.).

\(^1\)See WDR 2011.
Given these estimation concerns from examining income shocks, we propose a different way to empirically gauge the strength of the opportunity cost mechanism: by exploiting seasonal changes in labor demand driven by the timing and intensity of harvest. Due to the temporary and anticipated nature of harvest, we are able to hold constant important non-wage determinants of conflict such as the value of winning (Fearon 2008, Chassang and Padro-i-Miquel 2009) or the marginal utility of consumption, which normally upward biases empirical results. Indeed, estimates using simulated data show that the “true” opportunity cost of conflict can be uncovered almost exactly by a regression of time allocated to violence on seasonal variation in wages.

We focus our attention on the effect of seasonal labor demand shocks in Iraq (2004-2009), Pakistan (1988-2010), and Afghanistan (2004-2007), driven by the wheat harvest calendar (the main legal agricultural crop). Given the labor-intensive nature of agricultural activities, and the fact that many of these crops are harvested annually, they induce a large, transitory and anticipated change in the local demand for labor. Since the timing and intensity of harvest is determined by local climatic conditions (which we measure using pre-conflict data), we can rule out reverse causality running from conflict to opportunity costs. Because monthly time-series for local wages are normally lacking, we focus on the reduced-form relationship between the number of attacks in a location and the size of the area harvested.

Estimates across different conflict settings (Iraq, Pakistan, and Afghanistan) show that at times of greater labor demand due to harvest, the intensity of conflict is lower compared to non-harvest times in districts with a smaller area harvested. Our main findings show that for a district with the average crop intensity, the onset of harvest reduces the average share of monthly attacks by around 25% in Pakistan, 11-13% in Iraq, and 22% in Afghanistan. In addition, using household surveys and monthly weather information, we are able to rule out alternative explanations based on temperature, precipitation, state-driven violence, religious calendars, seasonal migration or job switching. Instead, consistent with our interpretation we show that during harvesting months agricultural workers tend to have differentially higher employment rates relative to other rural workers. Overall, these results indicate that in different conflict settings the opportunity costs of fighting — the foregone returns from working — may play a key role in determining the intensity of conflict.

Additional qualitative evidence suggests that such a trade-off between working and fighting is particularly applicable to “part-time” fighters – individuals who shift between conflict and legal work — depending on changing economic opportunities. In fact, part-time fighters
are a common feature of the industrial organization of modern insurgencies. For example, it is well known that some of members of the Vietcong guerrilla worked as farmers during the day but fought US forces at night. Conflict in the Philippines also explicitly relied on part-time fighters during the 1990s when entire battalions from the Moro Islamic Liberation Front (MILF) employed part-time soldiers on a monthly rotational basis to aid full-time combatants (Cline 2000). Similarly, in Afghanistan, Taliban forces have been known to organize in village cells each containing around ten to fifty part-time fighters (Afsar et. al. 2008). This was also the case for Iraq during the US intervention, as well as of highly ideological guerrillas such as Shining Path in Peru in the 1980s (McClintock 1998). The reason for such a division of labor is both financial — cheaper to maintain individuals who are ideologically committed but do not participate full-time — as well as tactical — full-time fighters tend to be more skilled and therefore protected from unnecessary risks that would undermine the insurgent effort. Figure 1 shows the estimated number of full and part-time fighters for a number of modern insurgencies.

Figure 1

![Diagram](image.png)

Part-time Fighters Dominate Recent Conflict

<table>
<thead>
<tr>
<th>Country</th>
<th>Full time (Core)</th>
<th>Part time Fighters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iraq (2005)</td>
<td>50,000</td>
<td>200,000</td>
</tr>
<tr>
<td>ISIS (2015)</td>
<td>20,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Peru (1990s)</td>
<td>10,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Afghanistan (2009)</td>
<td>5,000</td>
<td>25,000</td>
</tr>
<tr>
<td>Philippines (1989)</td>
<td>2,500</td>
<td>15,000</td>
</tr>
</tbody>
</table>

2The presence of part-time fighters already poses international law conundrums as to whether these fighters are protected by the Geneva conventions or not (CITE).

3Source: http://www.globalsecurity.org/military/ops/iraq_insurgency.htm
As noted, part-time fighters greatly outnumber those considered “full-time” or completely devoted to the insurgent effort. In fact, security-based NGOs have recognized the vulnerability of these part-time fighters to economic conditions and have launched initiatives to target part-time fighters for “reintegration” (New Strategic Security Initiative 2010, Afghanistan). Even historically, during the American Civil War (1861-1865) desertions from the Confederate Army increased in the months of June and July, the harvesting times for tobacco – an important Southern crop at the time (Giuffre 1997). In addition, during the Russian Civil War (1917-1922) desertion rates in the Red and White armies – largely formed by peasants – were notoriously high during the summer harvest (Figes 1996 cited by Dalbo and Dalbo 2011: 657). This is consistent with the ubiquitous presence of opportunity costs effects across conflict settings.

Contribution. The paper contributes to the literature in several ways. First, the paper shows that labor availability shapes the violent activities of insurgent groups, even those that are highly ideological such as the Taliban or the Iraqi insurgency. Given these insurgencies heavily rely on part-time fighters — who shift between conflict and legal work — their labor availability is influenced by these changing economic opportunities. The robustness of these results across different contexts and datasets is important given the well-known mixed results in the conflict literature.

Second, the paper contributes to the on-going debate by providing a rationale for why we might observe mixed results in the literature: these may actually be driven by the high persistence of the shocks analyzed. As such, the paper makes a broader methodological point about how the use of certain income shocks may lead to systematic biases making it difficult to capture the mechanism of interest and lead to seemingly contradictory findings.

Finally, the paper provides a novel source of exogenous variation in the demand for labor to study the mechanisms affecting conflict. Because harvest increases the static opportunity costs of fighting, while keeping the dynamic benefits of fighting constant, it reduces potential omitted variable bias due to consumption patterns or the perceived returns to victory (Fearon 2008; Chassang and Padro-i-Miquel 2009).

In terms of policy, care should be taken in interpreting our results for the opportunity cost mechanism as evidence in favor of employment programs or permanent forms of development aid. While there may be other reasons why these policies should be in place, their persistence across periods may lead to unintended consequences. For example, a permanent wage or
employment subsidy may mean that households are wealthy enough to devote time to fight causes they care about. Or, they may encourage people to fight to capture the rents from these schemes. Indeed, recent studies highlight how common it is for insurgent groups to appropriate aid which in turn leads to greater armed conflict (Nunn and Qian 2014; Crost et. al. 2014). One possibility is to create policies that are both temporary and anticipated that would neutralize their impact on conflict.

2 Theoretical Framework

A large empirical literature typically uses changes in commodity prices as an instrument for income to assess its effect on conflict. We study an alternative driver of the opportunity cost of fighting: the variation in labor demand due to the timing of harvest. In this section we compare our estimates of the opportunity cost of conflict to those in the literature to examine whether any one measure is better at uncovering the “true” effect.

Specifically, we compare estimates of opportunity cost parameters from persistent shocks versus seasonal shocks to labor supply in some simple models of conflict inspired by the main motivations for violence in the literature. For each model, we provide a precise definition of the “true opportunity cost” of violence – mainly, the elasticity of time spent on conflict activities with respect to wages keeping everything else constant – and compare it to estimates from a regression of violence on wages using model-generated data driven by persistent (e.g. commodity prices) versus seasonal variation in wages. In our main model (Section 2.1), rebels engage in violence in order to capture a resource which has some monetary value (a “greed” model). In Section 2.2, we sketch a model where rebels engage in violence for a cause (a “grievance” model), but leave the details of the dynamic model to the appendix. The intuition of the “greed” model is also easily extended to a situation where households provide counterinsurgency information in exchange for payment (Section 2.3).

It turns out that standard regressions with persistent (non-seasonal) unanticipated shocks lead to upward biased estimates of the opportunity cost of violence, because other factors determining violence also covary with wages. These other factors are model specific: in our main “greed” model, beneficial economic shocks that increase wages also increase value of spoils of wars, which (by itself) tends to increase the time allocated to violence (Fearon 2008; Chassang and Padro-i-Miquel 2009). In the grievance model, higher wages also make the

4 Other recent examples of aid-theft cited by Nunn and Qian (2014) are Afghanistan, Ethiopia, Sierra Leone, among others.
agent wealthier, which reduces the marginal utility of consumption, increasing the relative value of an extra unit of time allocated to violence.\(^5\) An increase in persistence exacerbates this bias. Because commonly used commodity prices in the literature are highly persistent they will tend to underestimate the role of opportunity costs mechanisms in conflict, which helps to rationalize the wide variety of estimates in the literature.\(^6\)

In contrast, seasonal shocks are both temporary and anticipated, which means that other factors determining violence tend to be held constant, even though opportunity costs change. This creates an almost-ideal environment in which even simple regressions without controls can isolate the true effects of changes in the opportunity costs of violence. The reason other factors are held constant is because they are forward-looking variables. For example, the value of an asset captured by rebel armies in a “greed” model depends on the present discounted value of future cash flows generated by the asset (e.g. oil). Anticipated changes in earnings do not affect asset prices. In the grievance model, consumption doesn’t respond to anticipated or temporary shocks, keeping the marginal utility of consumption constant. For these results, shocks only need to be temporary or anticipated — but seasonal shocks are both.

2.1 Greed Model

One of the most popular motivations for conflict in the literature is a contest for resources (Haavelmo 1954; Hirshleifer 1988, 1989; Garfinkel 1990; Skarpedas 1992; Garfinkel and Skaperdas 2007). In this section, we present the one side of a “contest” model, where rebels are fighting for control of economic profits and the probability that they win is increasing in their effort devoted to fighting. For tractability we keep constant the strength of counterinsurgency forces. In our model, effort is the time that seasonal fighters devote to conflict, which they could otherwise devote to working at wage \(W\). The seasonal fighter balances the extra income they could get working against the greater chance they will win if they

\(^5\) In the counterinsurgency information model, higher consumption from persistent shocks lowers the marginal utility of consumption which reduces their willingness to provide tips, potentially increasing insurgent violence.

\(^6\) We thank Scott Ashworth for this observation. The quarterly persistence of oil and coffee prices is around 0.96. Specifically, this is a regression \(l_{\text{price}}R_t = \rho l_{\text{price}}R_{t-1} + \Xi_t\) over 1960Q1-2015Q2 for average oil prices (\(\rho = 0.97\)), Arabica Coffee (\(\rho = 0.95\)) and Robusta Coffee (\(\rho = 0.97\)) taken from World Bank Pink Sheet., with nominal prices deflated by the US CPI (data from FRED). Results do vary over sub-samples, but commodity prices are still highly persistent. For example over 1988-2005, \(\rho = 0.9 - 0.94\) for these same shocks. Rainfall shocks are unsurprisingly not very persistent, though often have limited effect on agricultural output due to presence of irrigation.
spend that time fighting. If economic profits are constant, then an increase in wages makes working relatively more attractive and fighting less attractive. However, as pointed out by Fearon (2008) and Chassang and Padro-i-Miquel (2009), the same shocks (e.g. productivity shocks or commodity price shocks) can increase both the costs (foregone wages) and benefits (profits) of fighting, and so have no net effect on violence. In a dynamic setting, the costs of fighting are incurred today, whereas the benefits of winning are potentially in the future, such that negative temporary shocks increase violence more than persistent shocks (Chassang and Padro-i-Miquel 2009). As such, seasonal labor demand allows for a clean identification of the true opportunity cost of violence, because seasonal variation in wages are temporary and predictable, meaning that the potential spoils of winning are constant in high versus low labor demand seasons.

Related literature Our model relates to Fearon (2008), Chassang and Padro-i-Miquel (2009) and Dalbo and Dalbo (2011). In Fearon’s (2008) baseline model, there are no dynamics, and the rebels choose the optimal size of their forces, given the marginal cost of recruitment and the government’s response function. Conflict is unavoidable and a larger force increases the probability of winning, which then allows the winner to tax at a given rate. Chassang and Padro-i-Miquel (2009) present a bargaining model where two players decide to \{attack, not attack\} rather than choosing the intensity of conflict, conditional on a fixed labor cost of fighting, and an offensive advantage. If the rebels win, they gain the resources of the other side and in the dynamic version, winning is decisive forever. Dalbo and Dalbo (2011) presents a two-industry, two-factor static trade model with an appropriation sector to show how sector-specific prices affect conflict. Our model includes ingredients from all of these models. Like in Fearon (2008), conflict varies at the intensive rather than extensive margin. Like Chassang and Padro-i-Miquel (2009), the gains from winning are dynamic whereas the costs are static, meaning that temporary but not permanent productivity shocks affect violence (winning is also decisive). Like Dalbo and Dalbo (2011), our appropriation/fighting technology is strictly concave in labor (reflecting congestion effects); our production function is non-linear in labor such that real wages depend on the allocation of labor; and we abstract from the government’s response to violence.

7 In later models, Fearon (2008) add a detection probability, different abilities of rebels and governments to tax, and changes the contest function to a “capture” function.
2.1.1 Static Model

The household has one unit of time and decides at the start of the period how to split it between working or fighting. If the rebels win the fight, the agent earns the economic profits from production, Π. These profits can be thought of as the returns to a fixed factor like land, capital or a natural resource. If the rebels lose, the part-time fighter gains nothing. Whether the rebels win or lose, the agent still collects labor income from working $(1-V)W$. The probability that the rebel win is increasing but concave in the time allocated to violence V:

$$ p = \psi V^{1-\gamma} $$

(1)

$0 < \gamma < 1$ governs the effectiveness of the fighting technology, which means that the $p'(v) = \psi (1-\gamma)V^{-\gamma}$ is decreasing in V. A nice feature of this function is that the first hour of time devoted to conflict is infinitely productive (i.e. $\lim_{v \to 0} p'(v) = \infty$), which captures the stylized fact that many countries have a low-level insurgency with very little chance of overthrowing the government (Fearon 2008).

The household’s problem is:

$$ max_V pU(c_{win}) + (1-p)U(c_{loses}) $$

such that

$$ c_{win} = W(1-V) + \Pi $$

$$ c_{lose} = W(1-V) $$

Output is produced using only labor $(1-V)$, and labor is paid its marginal product W. As labor markets are competitive, the household takes the wages and profits as given. A is total factor productivity, which is the key exogenous variable in the model. If household produced a cash crop for export, and consumed only imported goods, then $A = p_Y/p_C$ could capture the terms of trade used when output, wages and profits (Equations 2-4) are written in terms of the consumption good.

$$ Y = A(1-V)^\alpha $$

(2)

8The strength of the counterinsurgency is governed by ψ. Restricting $0 < \gamma < 1$ also keeps the objective function concave.
\[W = \alpha A (1 - V)^{\alpha - 1} \quad (3) \]

\[\Pi = Y - W(1 - V) = (1 - \alpha)A(1 - V)^\alpha \quad (4) \]

To separate the mechanism from the one in a the grievance model (below and in the appendix), we make three assumptions (i) \(U(C) = C \) (linear utility, risk neutral agents), (ii) No saving or borrowing, (iii) Violence is NOT in the utility function.

Substituting for \(p \) and \(U(C) \), the HH’s problem becomes:

\[
\max_V W(1 - V) + \psi V^{1-\gamma} \Pi \\
\text{ProbWin}
\]

The FOC is:

\[V = \left[\psi (1 - \gamma) \frac{\Pi}{W} \right]^{\frac{1}{\gamma}} \quad (5) \]

Taking logs, we can get an equation to take to the data (actual or simulated):

\[\ln V = \frac{1}{\gamma} \ln \psi (1 - \gamma) + \frac{1}{\gamma} \ln \Pi - \frac{1}{\gamma} \ln W \quad (6) \]

Definition. The opportunity cost of violence is the elasticity of violence with respect to wages, keeping everything else constant, \(\frac{\partial \ln V}{\partial \ln W} = -\frac{1}{\gamma} \).

In order to estimate \(-\gamma^{-1}\) from a regression of violence on wages in Equation 6 requires controlling for \(\ln \Pi \). If instead researchers ran a univariate specification, \(\ln \Pi \) would be subsumed into the error term. As \(\ln W \) and \(\ln \Pi \) tend to be positively correlated (see below), this will bias upwards the coefficient on wages.

To see this, suppose that changes in wages are driven by changes in productivity \(A \) (or alternatively, the terms of trade). By substituting in \(\ln W \) and \(\ln \Pi \), Equation 5 becomes Equation 7. One can see that an increase in productivity \(A \) increases \(\Pi \) and \(W \) proportionately, and so in Equation 7 \(A \) cancels out exactly and violence is constant (i.e. \(A \) does not appear in Equation 7). This mean that if one ran a regression of \(\ln V \) on \(\ln W \), one would get a coefficient of zero, rather than \(-\gamma^{-1}\). This is Fearon’s (2008) result that economic development increases both the opportunity cost of violence as well as the spoils of war, leaving the level of violence unchanged.
\[V = \left[\psi (1 - \gamma) \frac{(1 - \alpha)(1 - V)^\alpha}{\alpha(1 - V)^{\alpha-1}} \right]^\frac{1}{\gamma} \]

(7)

2.1.2 Dynamic Model

Seasonal variation in productivity provides a context where the opportunity cost of violence changes, but the value of the prize of fighting is approximately constant. This effectively removes the omitted variable bias described above, allowing an unbiased estimation of the “true opportunity cost” parameter \(-\gamma^{-1}\) even if we can’t observe \(\Pi\). The opportunity cost of fighting varies with seasonal changes in productivity because it is incurred contemporaneously. In contrast, in a dynamic setting the bulk of the “prize of winning” are future rents from resources captured, which will be almost constant across “seasons” because changes in productivity are temporary and anticipated. In contrast, persistent shocks like commodity prices raise both the prize and cost of fighting, leading to upwards biased estimates of the opportunity cost of fighting.

More formally, let \(V_L(A)\) be the value (discounted lifetime expected utility) of a part time rebel fighter not in power deciding how much time to devote to fighting versus working. The state of the economy is \(A\) (total factor productivity) and whether the rebels are in power (\(L\) for lose summarizes their past defeats). If the rebels win, they will gain profits today \(\Pi\) and the value of being in power next period \(V_W\). This value depends on next period’s productivity \(A’\) (next period is denoted with \(t\)). Like Chassang and Padro-i-Miquel (2009), we make the simplifying assumption that if rebels win they stay in power forever.\(^9\) If the rebels lose, tomorrow the part-time rebel faces the same problem, and so have the same value \(V_L(A')\). The probability of winning, as in the static model, is \(p = \psi V^{1-\gamma}\). \(\beta\) is the quarterly discount rate. The household has linear utility in consumption, cannot save/borrow, and does not intrinsically value violence. \(W(1-V)\) is the income received from working (regardless of whether the rebels win or lose).

\[
V_L(A) = \max_{V} W(1-V) + \underbrace{\psi V^{1-\gamma}}_{\text{ProbWin}} \left(\Pi + \beta E[V_W(A')] \right) + \underbrace{(1-\psi V^{1-\gamma})}_ {\text{ProbLose}} \beta E \left[V_L(A') \right]
\]

If the rebels win, then there is no gain from fighting anymore, and so seasonal fighters

\(^9\)An alternative version includes an exogenous loss of rebel control with probability \(1 - \delta\). For low values of \(1 - \delta\), the model produced similar results (for high values it sometimes did not solve). But this makes the model much more complicated.
spend all their time working \((V = 0)\). As before, they earn labor income \(W(1 - V) = \alpha Y\) and also control profits \(\Pi = (1 - \alpha)Y\), yielding total income \(Y\). However, we also allow for rebel controlled production to be less productive by a factor \(0 < \lambda \leq 1\) such that \(Y = \lambda A(1 - V)^\alpha = \lambda A\). As such, the value of a part-time fighter when they are in power is:

\[
V_W(A) = \lambda A + \beta E V_W(A')
\]

The exogenous process for productivity is given by Equation 8 if there are persistent productivity or commodity price shocks, or Equation 9 when there is seasonal variation in productivity.

For **persistent shocks**:

\[
\ln A' = \rho \ln A + e
\]

(8)

Or, for **seasonal shocks**:

\[
\begin{align*}
\ln A_L &= \ln \bar{A} \quad \text{for } t + 1, t + 3, \ldots \\
\ln A_H &= \ln \bar{A} + \chi \text{ for } t, t + 2, t + 4, \ldots
\end{align*}
\]

The first order condition is:

\[
W = (1 - \gamma)\psi V^{-\gamma} \left[\Pi + \beta \left[EV_W(A') - EV_L(A')\right]\right]
\]

(10)

On the left hand side is the gain from devoting an extra hour to working: wages. On the right hand side is the gain from an extra unit of violence: the change in the probability of winning \(p'(V) = (1 - \gamma)\psi V^{1-\gamma}\) times the prize of winning: profits today \(\Pi\), and the discounted difference in future utility from being in power \(V_W(A')\) relative to not being in power \(V_L(A')\).

Model solution and simulation Log-linearizing the model around the non-stochastic steady state (where \(A' = A = \bar{A}\)), the losing value function, FOC, and winning value function become Equations 11, 12 and 13 respectively.\(^{10}\) Here a lower case variable with a hat \((\hat{x})\) represents the percentage deviation from steady state (which are denoted in capitals

\(^{10}\)This is a first order Taylor series approximation of the model’s FOCs and value functions. The “log” part refers to the fact that we perform the Taylor’s series approximation with respect to \(log X_t\) rather than \(X_t\) (i.e. rewrite \(X_t = e^{log X_t}\)).
If one could control for the prize of winning \((\Pi + \beta(\hat{V}_W E\hat{v}_W' - \hat{V}_L E\hat{v}_L'))\), one could run a regression of violence \((\hat{v})\) on wages \((\hat{w})\) which Equation 12 suggests one would estimate the true opportunity cost parameter \(-\gamma^{-1}\). But as the value of the prize of winning is typically unobserved and is correlated with wages, we use the model to calculate the degree of omitted variable bias for different types of shocks.

\[
\bar{V}_L \hat{v}_L = \hat{w} W (1 - \bar{V}) - \hat{v} \bar{W} W + (1 - \gamma) \hat{v} \psi V^{1-\gamma} \left[\hat{\Pi} + \beta \hat{V}_W \right] + \psi V^{1-\gamma} \left[\hat{\Pi} \hat{v} + \beta \hat{V}_W \hat{v}_W' \right] + \beta \hat{V}_L \hat{v}_L'(11)
\]

\[
\hat{v} = -\frac{1}{\gamma} \hat{w} + \frac{\Pi \hat{\Pi} + \beta(\hat{V}_W E\hat{v}_W' - \hat{V}_L E\hat{v}_L')}{\Pi + \beta(\hat{V}_W - \hat{V}_L)} (12)
\]

\[
\hat{v}_W = \frac{V}{\hat{V}_W} \hat{a} + \beta E\hat{v}_W' (13)
\]

where the marginal product of labor and the value of profits are:

\[
\hat{w} = \hat{a} + (1 - \alpha) \frac{V}{1 - \hat{v}} (14)
\]

\[
\hat{\pi} = \hat{a} - \alpha \frac{V}{1 - \hat{v}} (15)
\]

The model is not analytically tractable, so instead we simulate data when productivity is driven by persistent shocks (like commodity price shocks) or anticipated temporary seasonal variation in productivity, and estimate a regression of simulated violence on simulated wages. We calibrate \(-\gamma = -\frac{1}{3}\) to match the estimated elasticity of violence with respect to wages found in Colombia (-1.5).\(^{11}\) Specifically, we use an indirect inference approach and choose \(\gamma\) so that our estimated coefficient on simulated data with shock persistence \(\rho_{coffee} = 0.96\) (similar to the quarterly persistence of coffee prices) matches -1.5, which is what we empirically find with the available data.\(^{12}\) As before, with a persistent shock of \(\rho = 0.96\), the bias due to

\(^{11}\)Yearly log wages are instrumented by coffee prices x coffee suitability. Estimated at the municipal level with fixed effects. We drop zero violence municipalities. Data are from Dube and Vargas (2013), though this is our own regression, not the ones that the authors estimate (the authors use wages as a dependent variable).

\(^{12}\)Other parameters: \(\alpha = 0.5\) is calibrated to the all-countries, all-years average of the labor share from PWT8 (full value 0.5459). \(\lambda = \frac{3}{4}\) and \(\psi = 0.015\) are chosen to keep the steady state share of violence low (at around 7%), while matching the elasticity of violence to wages in the data with \(\rho = 0.96\). \(\beta = 0.99\) implies an annual real interest rate of around 4%. Steady state values of \(A = 1\) and \(\bar{V} = 0.07\). As discussed
omitting variation in the value of the prize of winning is substantial: the estimated coefficient of \(-1.5\) is around \(\frac{1}{2}\) of the true value of \(-3 = -\gamma^{-1}\) (Figure 2 LHS, blue line). The bias is small for very transient shocks, but rises sharply as shocks become persistent. In fact, as shocks become perfectly persistent, the estimated elasticity of violence with respect to wages becomes positive. In contrast, a regression of violence on seasonal variation in wages almost exactly uncovers the true opportunity cost parameter (-2.98 (green line) versus a true value of -3 (red line)). Examples of simulated paths of violence, wages and the prize of fighting are shown on the RHS of Figure 2: in the persistent shocks simulation (top panel), the prize of fighting rises slowly in the middle of the simulation and then falls.\(^{13}\) In the bottom panel, the prize of winning is almost completely unaffected by seasonal movements in productivity, which is what allows us to uncover the true opportunity cost parameter with a simple regression of violence on wages.

\[\gamma = 1/3 \text{ implies a true opportunity cost of -3}\]

\(^{13}\)The prize of the fighting moves slowly because it is forward looking: in steady state profits today are only around 2% over the value of winning \((\Pi/\Pi + \beta(V_W - V_L))\).

Figure 2: **Greed Model: Panel A:** estimated coefficient (LHS) and **Panel B:** simulated data (RHS)

2.2 Grievance model

In this model, we assume that rebels engage in violence for some “grievance” in which they place intrinsic value: examples include ethnic or religious hatred, retaliation, or nationalism.
(Horowitz 1985). That is, rebel violence is in the utility function. To make the mechanism completely clear — and to differentiate it from the “greed model” — we assume that there are no monetary benefits from violence, and to keep the model tractable we do not model the government’s response. A key assumption is that households get diminishing marginal utility from allocating additional time to violence \((U_V > 0; U_{VV} < 0)\), which means that an increase in “opportunity cost” will lead to a reduction in time allocated to violence, other things equal.\(^{14}\) We sketch a static model here, and reserve the dynamic model — which introduces seasonality and persistent shocks — for the appendix.

Static Model

As before, consider the problem of a household who has an endowment of one unit of time to divide between fighting \(V\) and working \((1 - V)\) at an exogenous wage \(W\). More formally:

\[
\max_{V,C} U(C, V) \quad \text{such that} \quad C = W(1 - V) \tag{16}
\]

Assuming an interior solution, the household’s first order condition is:

\[
U_V = U_C W \tag{17}
\]

Equation 17 says that the marginal utility from spending an extra hour fighting (LHS), must be equal to the hourly wage weighted multiplied by the contribution of consumption to utility (RHS). An increase in wages by itself means \(U_V\) must increase, which implies lower violence as \(U_{VV} < 0\) (the “substitution effect” or opportunity cost channel). However, an increase in wages will also usually increase consumption and reduce \(U_C\) (the marginal value of extra income in terms of utility, \(U_{CC} < 0\)), such that \(U_V\) falls and violence increases (the “income effect”). Which effect dominates depends on the parameters of the model, but so long as income effects are positive, violence will move by less than the opportunity cost/substitution effect suggests.

Assuming a standard constant relative risk aversion utility function \(U(C, V) = C^{1-\sigma}/(1-\sigma) + \psi V^{1-\gamma}/(1-\gamma)\) with \(\sigma \geq 0, 0 < \gamma < 1\) substituting and taking logs, we get a similar expression for violence as Equation 6 in the Greed model. As before, the opportunity cost is the elasticity of violence with respect to wages, keeping everything else constant, or

\(^{14}\) We also assume that violence and consumption are separable, that is \(U_{CV} = U_{VC} = 0\). This last assumption means that the marginal utility of fighting does not depend on how rich one is. Concavity also allows us to assume \(\lim_{V \to 0} U_V = \infty\), which corroborates the prevalence of low-level insurgencies described in Fearon (2008) —— even if the cause is not so convincing.
\[\frac{\partial \ln V}{\partial \ln W} = -\gamma^{-1}. \]

\[\ln V = -\frac{1}{\gamma} \ln \psi + \frac{\sigma}{\gamma} \ln C - \frac{1}{\gamma} \ln W \]

(18)

Despite the different motivation for violence, the grievance model has a very similar omitted variable problem as the greed model above. The analogue of the unobserved value of the prize (\(\Pi \)) is consumption \(C \) (which determines the marginal utility of consumption) in Equation 18 and is usually not observed (or is poorly measured). As such researchers might be forced to estimate some variety of \(\ln V = \beta_0 + \beta_1 \ln W + e_t \), where \(e_t = \frac{\sigma}{\gamma} \ln C \). However, typically \(\text{cov}(\ln C, \ln W) = \sigma_C W > 0 \) — people on higher wages have higher consumption and a lower marginal utility of consumption — and so the estimated magnitude of the opportunity cost of violence will be upward biased (towards zero). In the special case that utility is linear (\(\sigma = 0 \)), all income effects are removed and a simple uni-variate regression of violence on wages uncovers the true opportunity cost \(-1/\gamma\), regardless of movements in consumption.

Seasonal vs persistent shocks and the permanent income hypothesis (PIH)

In the dynamic model in the appendix, consumption is determined by the *permanent income hypothesis* — agents smooth their consumption over time and only consume out of their permanent income. This means that anticipated or temporary shocks to income/wages will be smoothed by savings/borrowing and will have almost no effect on consumption. As seasonal shocks are both anticipated and temporary, \(\frac{\sigma}{\gamma} \ln C \) in Equation 18 will be kept constant, yielding an unbiased estimate of the opportunity cost mechanism from a regression of violence on seasonal wage shocks — even if \(\ln C \) is unobserved.

In contrast, highly persistent increases in wages will lead to a large increase in permanent income, which will increase consumption. With log preferences (\(\sigma \rightarrow 1 \)), a permanent shock will raise consumption in proportion to wages, which will mean permanent labor demand shocks have no effect on violence, leading to a estimated opportunity cost of zero if the researcher can not control for consumption.

15 That is, \(E(\hat{\beta}_1 - [-1/\gamma]) = \frac{\sigma \sigma_W C}{\gamma \sigma_W^2} > 0 \)

16 That is log-linearized Euler equation implies \(\hat{c}_t \approx E_t \hat{c}_{t+1} \).

17 The larger is \(\sigma \), the stronger are income effects and the larger the bias for permanent wage shocks. For permanent shocks, one can take a log-linear approximation of of FOC and budget constraint to yield: \(\hat{v} = \frac{(\sigma - 1)}{\gamma + \sigma V/(1 - V)} \hat{w} \). If \(0 < \sigma < 1 \), the substitution effect dominates the income effect: the coefficient on wages is still negative, but is biased upwards. However if \(\sigma > 1 \) — such as \(\sigma = 2 \) for numerical simulations in
In the appendix, we generate simulated data in the grievance model with seasonal and persistent commodity shocks, and run a univariate regression of simulated violence on simulated wages. As in the dynamic greed model above, regressions on seasonal shocks are able to uncover the true opportunity cost, but regression on data driven by commodity prices shocks are substantially upward biased because commodity prices are highly persistent.

2.3 Counter-insurgency and the value of information

Berman et al (2011a) argue that information is a key component of any counterinsurgency strategy: if government forces do not receive information on where the rebels are hiding (for example), then counterinsurgency efforts will be ineffective. In other words, military effort and information are *complements*. In order to gain information, government forces often pay locals for tips. Berman et al (2011b) argue that this provides a reason why they find a *negative* relation between unemployment and violence: when unemployment is high, it is cheaper for government forces to buy information from the local population, which then reduces insurgent violence. The fact that the local population does not provide information freely suggests that there is some sort of utility cost to providing it (e.g. they don’t like “snitching”, or it is dangerous). Hence, the willingness of the household to provide information depends on its marginal utility of consumption, which could fall with positive persistent shocks, but is kept constant by seasonal shocks. We briefly sketch the argument below, as it is almost identical to the mechanism in the grievance model above.

Consider a modification of the static set up in Equation 16 above to incorporate information provided to counter-insurgency forces \(I \). The household doesn’t like to provide information, so \(U_1 < 0 \), and dislikes each additional unit of “snitching” even more, such that \(U_{II} < 0 \) (we continue to assume that utility is separable in information, consumption and time allocated to violence). The household gets a payment \(s \) for each “snitch”, which we assume is constant. The household’s problem is then:

\[
\max_{V,I} U(C, V, I) \quad \text{such that} \quad C = W(1 - V) + sI
\]

The FOC wrt to time allocated to violence is unchanged from Equation 17 above, whereas

the appendix — a permanent increase in wages reduces the marginal utility of consumption sufficiently that an increase in wages actually *increases* violence. However, commodity price shocks are highly persistent but not permanent, and as such simulations suggest that an increase in wages due to a persistent commodity price shock still reduces violence, though by half as much as the true opportunity cost mechanism would suggest.

17
the FOC wrt I implies:

$$-U_I = UCs$$ \hspace{1cm} (20)

One can see that if there is an increase in consumption from a persistent shock (such as a persistent commodity price shock), then UC will fall (because $UC_C < 0$). As s is constant $-U_I$ also must fall. Note that $-U_I > 0$ and $-U_{II} > 0$, so the only way for $-U_I$ to fall is for the household to provide less information: richer households have less need to become an informant as in Berman et al (2011b), which could actually increase aggregate violence. But because seasonal shocks are temporary and anticipated they will not lead to a change in consumption, and so UC will be constant, and information provision will be unaffected. As before, this allows seasonal variation in wages to produce an cleaner estimate of the opportunity cost of mechanism.

3 Data and Empirical Methodology

The results described above lead to the following empirical implication: the onset of harvest has a negative impact on conflict intensity by increasing the returns to working (e.g. wages) relative to fighting. To bring this implication to the data one would ideally instrument the variation in monthly wages driven by harvest and examine its effect on conflict. In practice, conflict-ridden areas (and even non-conflict ones) often lack comprehensive monthly time-series for local wages. Hence we focus on estimating the reduced-form effect of violence on harvest onset. The idea is that a negative coefficient would be consistent with the idea that increases in local labor demand reduces the attractiveness of fighting. We also provide additional evidence showing that harvest brings about changes in local labor markets to support the idea that the effect is driven through this mechanism.

3.1 Data

The data for our conflict episodes relies on a number of different sources. For every conflict episode we sought disaggregated data on violent incidents to match the spatial variation of harvesting calendars across the country. Because we exploit monthly-by-district changes in labor markets and include a number fixed effects indicators, the only factors that could confound the effect observed are those which vary at the district-by-month level (for example, precipitation or temperature).
Violence. Our main dependent variable is the monthly \((m) \) share of attacks per district \((i) \) \(\left(\frac{\text{Attacks}_{i,m}}{\text{Attacks}_{i}} \right) \) relative to its total given a year \((t) \). This is a way to normalize across different conflict settings. We look at different conflict settings and datasets on violence, as a way to avoid assigning disproportionate weight to a single data collection procedure given the well-known difficulties in recording violence. We use both very precisely geolocated datasets (e.g. latitude, longitude) as well as those in which the level of aggregation is that of small administrative units (e.g. districts or municipalities). However, we generally rely on the district level results as a way to reduce measurement error. For Iraq we use the World Incident Tracking System (WITS), the Global Terrorism Dataset (GTD) and Iraq Body Count dataset (IBC). In the case of Pakistan, we use the BFRS dataset on political violence which is available at the district-level as well as the GTD data which is precisely geolocated. In the case of Afghanistan, we rely on conflict data provided by WITS between 2004 and 2010 aggregated at the level of the district.

Harvesting Calendars. For the case of Afghanistan, Pakistan and Iraq, the timing of harvest for each cell or district is provided by the FAO Global Agro Ecological Zones v3.0\(^{18}\) (GAEZ v.3.0) which provides high resolution maps for the start and length of the growing cycle for a number of crops. Our harvesting indicator takes the value of 1 for the month immediately after the end of the growing cycle. For each crop we also capture whether it utilizes high, medium or low inputs which indicates whether the crop is rain-fed or irrigated. Because our indicator captures the onset of harvesting for any type, districts could have more than one harvesting month if it cultivates more than one type of crop and these differ in their harvesting date.

In the case of planting, we follow the same approach and create an indicator for the month prior to the start of the growing season under the logic that this is the time in which land is prepared and sowed before seeds can grow. As an example, Figure 3 below shows the harvesting calendars for Iraq. Since the harvesting month varies across districts within the year, it provides within country variation in the month in which wheat is cultivated thus allowing for identification of its effect. For Iraq, around half the wheat is cultivated in June, yet, some areas also harvest as late as September and others as early as April.

\(^{18}\)Available at: http://www.gaez.iiasa.ac.at/
Crop Intensity. Crop intensity is measured in hundreds of square kilometers and is calculated by the FAO for the period 1960-1990, which clearly precedes our period under study. We interact the harvesting and planting indicator with the historical intensity of crop production to avoid giving greater weight to areas with little to no crop production.

To illustrate, Figures 4 through 6 show the raw images provided by GAEZ v.3.0 and those once linked to a 0.1 by 0.1 decimal degrees grid for the Iraqi case (approximately 11kms by 11kms cells). Figure 4 shows the intensity of wheat production; Figure 5 shows the start day cycle for medium input crops and Figure 6 shows the length of the cycle. The weighted harvesting calendar is thus determined by when wheat is planted combined by how long it needs to grow according to where it is cultivated and weighted by how much wheat is cultivated. This fine-grained information is then aggregated at the district-level to calculate the intensity with which a given district is “in harvest”.

Figure 4: Left: Wheat Production. Right: Grided Production
Figure 5: Left: Start Day Medium Input Wheat Irrigated. Right: Gridded Start Day

Figure 6: Left: Length of Cycle Medium Input Wheat Irrigated. Right: Gridded Length Cycle

Additional controls. Additional control variables at the cell or district level always include those of precipitation and temperature. Although the timing of harvesting is unlikely to be influenced by crop production, it is possible that monthly factors determining harvest may also affect the intensity of violence thus confounding our results. Therefore, we collected data on monthly-district measures of precipitation (in millimeters) and temperature (degrees Celsius) for Iraq, Afghanistan, and Pakistan provided by Willmott and Matsuura (2001).

To examine the effect of harvesting on local labor markets we also examine household surveys which ask for monthly patterns of employment and time use, which are designed to be representative of the rural sector. While the survey asks for monthly employment
patterns, unfortunately it does not do the same for wages. In the case of Iraq, we use the Living Standards and Measurement Study collected by the World Bank in 2006-2007.\footnote{Available at: http://econ.worldbank.org/}

3.2 Estimation

Our outcome of interest $\% Attacks_{imt}$, is the share of attacks in a district i, calendar month m and year t relative to the total in that district and year. Our key independent variable $Harv_{im} \times Prod_{i}$ is the number of hundred square kilometer of wheat in harvest in district i, month m and year t, unless otherwise specified. In all specifications we also include the effect of the planting season on conflict. Hence we estimate:

$$Attacks_{imt} = \alpha_{it} + \gamma_{m} + \beta(Harv_{im} \times Prod_{i}) + x_{imt} + \epsilon_{imt}$$ \hspace{1cm} (21)

Where α_{it} is a district by year fixed effect, and γ_{m} is a month fixed effect (e.g June); x_{imt} is a vector of monthly district characteristics such as monthly temperature in degrees Celsius and precipitation in millimeters. The parameter of interest is β which captures the effect of harvesting on conflict intensity. Standard errors are clustered at the district level, which accounts for serial correlation in the error terms for that spatial unit.

3.3 Threats to Identification

Our identification strategy exploits the fact that seasonality or the timing of harvest is clearly exogenous to the intensity of armed conflict. That is, we exploit the roll-out of harvest and compare how violence changes in districts in harvest relative to months without it. Since the timing of harvest is given by a combination of geographic and climate factors, it is unlikely to be manipulated by conflict dynamics. Certainly conflict may affect crop production itself, yet, this would only run against finding any relationship between the harvesting month and the intensity of armed conflict within a district.\footnote{For instance, conflict may shift grain collection for some weeks, yet, it is unlikely to do so for a whole month (which is our the size of our indicator "window") as it would be pointless from the producer standpoint: either crops will not be ripe or they would rot as time passes.}

While reverse causality is not necessarily a concern, a more important challenge comes from omitted variable bias or time-varying determinants of harvest (e.g. precipitation, or temperature) which may correlate with conflict. For example, in the Iraqi case Figure 7 below shows how the onset of harvesting (roughly from May to July) is indeed accompanied
by an increase in temperature and a decrease in precipitation. If temperature were to have a positive effect on conflict, as a number of studies suggest (Burke et. al. 2009; Hsiang et. al. 2013), this would only exert an upward bias in our results. That is, the true coefficients would be actually larger (e.g. more negative) than our estimated coefficients. Similar concerns arise with the amount of precipitation, since intense rainfall may constitute a physical impediment to conducting attacks. However, as shown in the LHS of Figure 7, precipitation is actually lower at times in which most of the harvesting is occurring such that, if anything, coefficients would also be upward biased.

Figure 7: Monthly Precipitation (left) and Temperature (right) Patterns in Iraq

4 Empirical Results

If opportunity costs are an important consideration to participate in conflict activities, it must therefore be present in cases where part-time fighters are common (or where there is a large share of individuals deciding whether to fight or not). In this section we show how across different conflict settings seasonal labor markets play a key role in determining within-year variation in the intensity of violence. Given the differences in data sources and coding methods we present each case separately while holding constant the main specification, unless otherwise specified.

4.1 The Iraqi Conflict (2004-10)

Between 2004-2011 Iraq was gripped by a civil conflict along sectarian lines as well as Sunni insurgencies in numerous parts of the country. The intensity of the conflict, coupled with
the strong reliance on agriculture as an economic activity and the cultivation of wheat as the main subsistence crop, makes it an ideal setting to explore the importance of seasonal labor markets for violence intensity.

Iraq Body Count (2004-2009). Our analysis starts by examining the patterns of insurgent activity using geocoded incidents captured by instances of district-level violence collected in the Iraqi Body Count dataset (IBC). This dataset is maintained by a non-profit organization which quantifies the number of casualties based on multiple sources (including media) and distinguishes between the type of attack such as airstrikes, artillery fire, bomb devices, gunfire, among others. We use these different categorizations to examine whether harvest induces insurgent groups to favor certain tactics at the expense of others when labor availability is low (Bueno de Mesquita 2013). Specifically, we distinguish between *labor intensive* attacks, or those that require greater manpower to be carried out (e.g. armed attack or assault), and *asymmetric* attacks, those in which participants are not able to exchange fire and have generally lower manpower requirements (e.g. IEDs) (Bueno de Mesquita et al. 2015). We also report results where we pool across all attack types.

Columns (1) to (4) of Table 1 above shows that in this dataset there is evidence of lower seasonal attacks during harvest periods. Specifically, an increase of a hundred square kilometers of wheat production at harvest is associated with a reduction in the intensity of attacks, particularly those labor intensive (direct fire and selective targets) as opposed to asymmetric ones (indirect fire and bombing). Specifically, column 1 shows that an increase of a hundred square kilometers of wheat cultivation in the district at harvest leads to a reduction of 0.83 percentage points in reported events. Given the average wheat cultivation intensity per district is 1.2 hundred square kilometers, the coefficient entails a reduction of 12.5% in the average monthly share of lethal events captured by this dataset.
Table 1: Seasonal Labor and Violent Incidents in Iraq

<table>
<thead>
<tr>
<th>Iraqi Body Count</th>
<th>District-Level Analysis</th>
<th>WITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>DV: Monthly % of...</td>
<td>Total Attacks</td>
<td>Asymmetric Labor Victims</td>
</tr>
<tr>
<td>$Harv_{im} \times Prod_i$</td>
<td>-0.833***</td>
<td>-0.610</td>
</tr>
<tr>
<td></td>
<td>(0.288)</td>
<td>(0.536)</td>
</tr>
<tr>
<td>$Plant_{im} \times Prod_i$</td>
<td>-0.323</td>
<td>-0.635*</td>
</tr>
<tr>
<td></td>
<td>(0.346)</td>
<td>(0.344)</td>
</tr>
<tr>
<td>Mean Harvest Area</td>
<td>1.254</td>
<td>1.306</td>
</tr>
<tr>
<td>Observations</td>
<td>5,148</td>
<td>3,240</td>
</tr>
<tr>
<td>Clusters</td>
<td>92</td>
<td>65</td>
</tr>
<tr>
<td>DistXYear FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Month FE</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Temp & Precip</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Clustered robust standard errors at the district level in parentheses. $Prod_i$ is measured in hundred sq kilometers. DV in percentage points. *** p < 0.01, ** p < 0.05, * p < 0.1

Cross-validation: WITS Dataset (2004-2010). As a cross-check to our results we run the same specification but now using as dependent variable insurgent activity captured by the Worldwide Incidents Tracking System (WITS) which is based on media accounts of terrorist events.\(^21\) This dataset focuses on incidents that are both “international and significant” in nature and is used as a reference point for the State Department (Wigle 2010).\(^22\) In addition to tracking the number of terrorist events, the dataset also provides broad categorizations of the type of terrorist attacks – whether it was an armed attack, an attack using improvised explosive device (IED), a suicide bomb, among others.

Table 1 shows the estimates from Equation 21 using as dependent variable the monthly share of violent incidents in the district. Columns (5) through (8) show how the onset of harvest leads to a reduction in total levels of violence, as well as a reduction in asymmetric

\(^{21}\) Available at: http://www.nctc.gov/site/other/wits.html

\(^{22}\) The term “international” meant any acts that involved the citizens or territory of more than one country. (...) What constituted a significant act was even fuzzier and was left to the opinion of the Secretary of State,\(^{[5]}\) although there were some rules promulgated by the State Department. For example, a significant attack meant an act of terrorism that either killed or seriously injured a person, or caused USD $10,000 in property damage.” (Wigle 2010)
but not labor-intensive attacks. In terms of magnitude, the coefficient of -0.6 in column (5) suggests that an increase of one hundred square kilometers of wheat production at harvest leads to a reduction in the share of monthly attacks of approximately 0.6 percentage points. Considering the average production of wheat at the district level is 1.2 hundred square kilometers, the coefficient implies a reduction of the average monthly share of attacks of 10%. Similar effects are shown in column (6), where the coefficient of 0.88 also represents around a 13.5% reduction in the average monthly share of attacks, while column (7) shows the reduction in labor intensive is very small but not statistically different from zero. These results closely follow the estimates from the IBC dataset.

Robustness. Additional results in the online appendix\(^ {23}\) show that these findings are similar when restricting the sample to only wheat producing areas (Table 2 and 3). It is worth noting that the onset of planting is either associated with a reduction in attacks or with a very small coefficient, but estimates are often less precisely estimated. This lower effect is likely driven by the lower demand for labor posed by planting as opposed to harvesting. In addition, to make sure the results are not merely driven by the functional form examined, Table 4 and 5 of the online appendix present the results of regressing an indicator of above the median wheat production and the harvest calendar (below median production is the omitted category). As shown, coefficients are much larger but less precisely estimated for the IBC dataset. In addition, tables 6 and 7 of the online appendix includes lags for harvesting an shows that the negative effect is driven by the contemporaneous change in harvesting status, particularly for the IBC evidence. Thus providing little evidence of anticipation effects by armed groups. Finally, tables 8 and 9 of the online appendix compares the effect on violent of harvest in rain-fed versus irrigation areas and shows little differences on their effect on conflict. If anything, the IBC dataset suggests that in Iraq, the variation in irrigated harvesting areas is driving the effect observed in conflict.

In addition to WITS we also use the Global Terrorism Dataset (GTD) for Iraq as a final cross-check of the results obtained. This dataset is maintained by the National Consortium for the Study of Terrorism and Responses to Terrorism (START) at the University of Maryland and is also based on media reports, yet, exhibits a much lower frequency of attacks overall. Estimates of Equation 21 using this dataset shows that the coefficients vary in sign and are not statistically significant.\(^ {24}\) A more detailed investigation of the differences between the GTD and the WITS or IBC data are an area for future research.

\(^{23}\)Available at https://sites.google.com/site/jennyguardado/

\(^{24}\)Results available upon request.
Mechanisms and Alternative Explanations

For these results to be consistent with the theoretical framework, it must be that the onset of harvest leads to tangible differences in labor market outcomes. To assess whether this is the case we use the 2006 LSMS Iraqi household survey, to examine whether regional patterns of harvesting relate to employment among agricultural workers. Ideally, we would like to match each respondent to a particular district and follow it throughout the years. However, due to privacy concerns, the survey only provides a cross-sectional snapshot at the time of harvest of individual employment at the governorate level in Iraq (of which there are 18), therefore, this evidence should be taken as indicative of seasonal patterns of employment until more fine-grained information becomes available.

Figure 8 shows the difference in the probability of employment among rural agricultural workers (relative to non-agricultural ones) by month. As shown, these differences, controlling for a number of factors, closely follows the harvesting calendar in rural Iraq. This is consistent with the idea that harvesting affects conflict by influencing local labor markets.

Figure 8: Monthly Employment Patterns

Y-axis: coefficients from a regression of monthly indicators on employment (“Did you work in this job in month...?”). Additional controls include: individual’s age, level of education, gender, household size and language (Arab or not). We include governorate fixed effects and cluster the standard errors at the level of the survey cluster.

Job Switching and Migration. Although employment patterns mirror the harvesting calendar in Iraq, it is important to rule out the possibility that individuals switched jobs within the year. Of the 11,157 individuals surveyed living in rural areas only 521 individuals or 4.67% reported more than one occupation throughout the year and 0.23% reported the
maximum of three occupations during the year. This shows it is unlikely they will be switching occupations throughout the year. A related concern is whether individuals migrate to other areas for work, potentially explaining the observed patterns of conflict. However, among agricultural workers, the share of individuals reporting an absence from home for an extended period is only 3.67%.

Labor availability versus Harvest Income. A different concern with our measure is whether the time of harvest is instead proxying for the income received as opposed to actual labor availability. This is unlikely in the Iraqi context because most farmers sell their grain to the governmental Iraqi Grain Board who subsidizes wheat production. Once a year farmers take their harvest to one of the numerous silos across the country. This takes place once all harvest is collected due to logistic and transportation costs. Farmers then receive a receipt which has to be cashed in a bank. The process ensures that the time of harvest is prior to receiving any income.

Religious Calendar. In addition to showing how employment patterns vary with monthly harvesting season, it is important to rule out the presence of any religious significance or activities associated with harvest which may explain the decline in violent activities. Although Islamic religious festivities are common to all districts, its exact dates changes each year. However, for the period under study in Iraq (2004-2009) and Pakistan (1988-2010) Ramadan always fell between August and October or August and January respectively, well after the harvesting season in each case. Nonetheless, we make sure that harvesting does not carry a local religious significance that would explain the reduced violence and examine the 2008 Iraqi Time Use survey to examine whether the hours allocated to religious activities vary by month. Figure 3 in the Appendix shows the coefficients from a regression of hours spent on religious activities on whether the individual is an agricultural worker or not. For each month, there is no difference in religiosity among agricultural workers versus others. However, we do observe a slight reduction in religious activities in June, the month when about half of the districts experience harvest. This is consistent with the idea that the reduction in violence is unlikely to be driven by increased religiosity among agricultural workers.

In addition, in Table 10 and 11 of the online Appendix we estimate our baseline specification using month of the year time effects (as opposed to only month with district by year fixed effects separate) to account for any common factor affecting all districts in the same

month and year (e.g. religious festivals). Results are similar and more precisely estimated for the IBC data – when compared to the baseline specification – thus reducing any concern that certain months may carry special significance affecting conflict intensity. The results for WITS are less precisely estimated but similar in magnitude and sign.

4.2 The Pakistani Conflict (1988-2010)

For the case of Pakistan we examine patterns of seasonal conflict using the GTD Global Terrorism Dataset (GTD) and the BFRS Political Violence Dataset (Bueno de Mesquita et al. 2015). These datasets categorize violent incidents into whether it is conventional (e.g. labor intensive) or asymmetric (e.g. less reliant on labor – IEDs, suicide bombs) for Pakistan between 1988 and 2010.26 Given the constant presence of political violence by different militant groups in Pakistan, their high reliance on part-time forces, and the importance of agriculture (in particular wheat) as a source of employment, we would expect that seasonality play a role in conflict intensity. For instance, Figure 4 of the online appendix, shows how the peak of wheat harvesting in Pakistan occurs mostly in May, while planting occurs mostly in October. This stands in contrast to Iraq’s calendar, where most of the harvesting occurs in June and the planting in December.

Table 2 below presents the results with the same specification as before but using district-level attacks in Pakistan between 1988 and 2010 in the GTD dataset. The first row shows that the onset of harvest is associated with a reduction in the total number of attacks (column 1), the total number of asymmetric attacks by militants (column 2), conventional attacks by militants (column 3), and the monthly share of those killed (column 4). As noticed, the onset of harvest is associated with a reduction in 0.4 percentage points in conflict events, yet, the higher average intensity of wheat production in these areas entail a higher average effect ranging from 15 to 30%.

26More precisely, the authors of the BFRS dataset distinguish between militant, conventional and asymmetric attacks as follows “Militant attacks are those attributed to organized armed groups that use violence in pursuit of pre-defined political goals in ways that are: (a) planned; and (b) use weapons and tactics attributed to sustained conventional or guerrilla warfare and not to spontaneous violence. Conventional attacks by militants include direct conventional attacks on military, police, paramilitary, and intelligence targets such that violence has the potential to be exchanged between the attackers and their targets. Asymmetric attacks include both terrorist attacks by militants, as well as militant attacks on military, police, paramilitary and intelligence targets that employ tactics that conventional forces do not, such as improvised explosive devices (IEDs).” (Bueno de Mesquita et al. 2015: 17)
Table 2: Seasonal Labor and Violent Incidents in Pakistan

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GTD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV: Monthly % of...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harv\textsubscript{im} × Prod\textsubscript{i}</td>
<td>-0.409***</td>
<td>-0.505***</td>
<td>-0.206</td>
<td>-0.369***</td>
</tr>
<tr>
<td>(0.078)</td>
<td>(0.103)</td>
<td>(0.130)</td>
<td>(0.103)</td>
<td></td>
</tr>
<tr>
<td>Plant\textsubscript{cim} × Prod\textsubscript{ci}</td>
<td>-0.092</td>
<td>-0.090</td>
<td>-0.141</td>
<td>-0.234**</td>
</tr>
<tr>
<td>(0.131)</td>
<td>(0.117)</td>
<td>(0.176)</td>
<td>(0.111)</td>
<td></td>
</tr>
<tr>
<td>Mean Harv Area</td>
<td>6.198</td>
<td>5.214</td>
<td>6.260</td>
<td>6.341</td>
</tr>
<tr>
<td>Mean DV</td>
<td>8.333</td>
<td>8.333</td>
<td>8.333</td>
<td>8.333</td>
</tr>
<tr>
<td>Observations</td>
<td>7,704</td>
<td>5,484</td>
<td>4,056</td>
<td>5,964</td>
</tr>
<tr>
<td>Clusters</td>
<td>111</td>
<td>95</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>DistXYear FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Month FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Temp & Precip</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Clustered robust standard errors level in parentheses. \(Prod\textsubscript{i} \) is measured in hundred sq kilometers. DV in percentage points. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \)

Cross-validation: BFRS Dataset (1988–2010). Additional evidence from the BFRS shows some evidence in favor some seasonality of conflict, though results are not as robust as using GTD. Table 12 in the online appendix shows that while most coefficients have expected sign, only that of conventional attacks by militants is of statistical and economic significance, implying that the onset of harvest reduces these types of attacks 0.4 percentage points, or 21% at means. However, this dataset may also mask significant heterogeneity in the extent to which rain-fed versus irrigation areas explain the results. As shown in Table 13 of the appendix, areas where wheat is rain-fed exhibit a stronger relationship between conflict intensity and seasonality relative to irrigated areas. In fact, the same relationship is visible in the GTD dataset as shown in Table 14 of the online appendix. This suggests that the distinction between rain-fed and irrigated is of greater significant in Pakistan.
Robustness. In Table 15 of the online Appendix we run a regression interacting the harvest indicator with a variable capturing whether the district is above or below the median of wheat production intensity. We find that indeed most of the effect is driven by greater wheat intensity cultivation in the GTD dataset. More importantly, in Table 16 we show how the results are robust to including a month-year fixed effect (as opposed to a district-year fixed effect with added month of the year fixed effect) which would account for a number of alternative explanations such as variation in the strength of the overall conflict, or levels of religiosity between months, or changes in the state engagement, etc. Finally, Table 17 in the online appendix shows how most of the effect estimated above are driven by the contemporaneous onset of harvest and not by its lags suggesting little anticipation effects.

4.3 Afghanistan (2004-2010)

After being overthrown by U.S. and U.K forces in 2001, the Taliban launched an insurgent movement to regain power. Since then the insurgency has waged asymmetric warfare against ISAF forces – the UN assistance force, later aided by NATO – as well as members of the Afghan military and the government. Most of the Taliban recruits came from poor madrasas, motivated by local grievances, and participated only on a part-time basis due to their work as farmers or laborers (Qazi, S. H. 2011: 10). Taliban cells were thus composed by around ten to fifty part-time fighters (Afsar, Samples, and Wood 2008: 65) who periodically gather to launch attacks but then return to their laboring activities. Given their reliance on part-time fighters, it is likely that their availability and the intensity of the attacks will be dictated by times of labor demand driven related to harvest.

One difficulty with the Afghan case is the presence of a highly lucrative opium trade which has boomed with the Taliban presence. In fact, existing studies draw a connection between
conflict and the incentives to cultivate opium (Lind et al. 2014). While this connection is interesting in its own right and an area for future research, it is a confounding factor in our estimates, particularly because the conditions favoring wheat and opium production are very similar, thus acting as substitutes. Since the harvest calendars overlap it makes it hard to distinguish whether violence intensity is driven by wheat production or other dynamics associated with illegal markets. The distinction is crucial given the huge differentials in value created at harvest between wheat and poppy (“growing poppies is six times as profitable as growing wheat” UNODC 2010: 5) which may trigger appropriation incentives (or “rapacity mechanisms”) dominating opportunity cost mechanisms as well as violence more generally, such as in the Colombian case with coca production (Angrist and Kugler 2008).

To account for this, we depart from the baseline specification in two ways: first, we limit the sample to those districts where reported opium cultivation throughout the period is zero. However, because this measure is naturally imprecise, we take advantage of the fact that most poppy is cultivated in irrigated areas, while wheat is cultivated in both irrigated and rain-fed areas.

Hence focusing on the wheat calendar of rain-fed areas will better capture demand for labor due to wheat cultivation as opposed to poppy. By examining only in rain-fed wheat in non-opium provinces, we make sure that poppy cultivation is not present and unlikely to be biasing our estimates.

Results from Table 3 below show indeed that focusing only in areas unlikely to be cultivating poppy, the onset of harvest leads to a reduction in the intensity of attacks. The coefficient of -16 in column (1) suggests that the onset of harvest leads to a reduction on average of 15 percentage points in the average of monthly attacks. However, given the average intensity of rain-fed wheat cultivation is only 0.092 hundred square kilometers, this entails a 17% reduction in the average monthly share of attacks. In terms of types of attacks, both asymmetric (bombs, firearms) and labor intensive (attacks) are negatively related to the onset of harvest. The same is true for a attacks initiated for overall casualties.

27 Specifically we estimate: \[\text{Attacks}_{imt} = \alpha_i + \gamma_{it} + \beta_1 (\text{Harv}_{imt} \times \text{RainProd}_i) + \beta_2 (\text{Harv}_{imt} \times \text{IrrigProd}_i) + x_{imt} + e_{imt}, \] where \(\text{RainProd}_i \) and \(\text{IrrigProd}_i \) are captured by the district fixed effect.
Table 3: Seasonal Labor and Violent Incidents in Afghanistan.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provinces Below Median Opium Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV: Monthly % of...</td>
<td>Total Attacks</td>
<td>Asymmetric</td>
<td>Attack</td>
<td>Casualties</td>
</tr>
<tr>
<td>Harv${cim}$ × RainProd${ci}$</td>
<td>-14.962***</td>
<td>-14.862***</td>
<td>-20.941***</td>
<td>-21.225***</td>
</tr>
<tr>
<td></td>
<td>(4.052)</td>
<td>(4.197)</td>
<td>(6.005)</td>
<td>(6.963)</td>
</tr>
<tr>
<td></td>
<td>(2.801)</td>
<td>(2.795)</td>
<td>(3.945)</td>
<td>(5.359)</td>
</tr>
<tr>
<td>Harv${cim}$ × IrrigProd${ci}$</td>
<td>1.129</td>
<td>0.285</td>
<td>-2.758</td>
<td>-1.241</td>
</tr>
<tr>
<td></td>
<td>(2.924)</td>
<td>(2.817)</td>
<td>(2.076)</td>
<td>(2.353)</td>
</tr>
<tr>
<td>Plant${cim}$ × IrrigProd${ci}$</td>
<td>-2.343*</td>
<td>-2.478*</td>
<td>-2.625**</td>
<td>-2.674*</td>
</tr>
<tr>
<td></td>
<td>(1.252)</td>
<td>(1.302)</td>
<td>(1.281)</td>
<td>(1.600)</td>
</tr>
<tr>
<td>Avg Harv Area</td>
<td>0.0928</td>
<td>0.0928</td>
<td>0.0896</td>
<td>0.0875</td>
</tr>
<tr>
<td>Mean DV</td>
<td>8.333</td>
<td>8.333</td>
<td>8.333</td>
<td>8.333</td>
</tr>
<tr>
<td>Avg Effect</td>
<td>-16.66</td>
<td>-16.55</td>
<td>-22.51</td>
<td>-22.28</td>
</tr>
<tr>
<td>Observations</td>
<td>2,472</td>
<td>2,436</td>
<td>1,932</td>
<td>1,776</td>
</tr>
<tr>
<td>Clusters</td>
<td>103</td>
<td>102</td>
<td>87</td>
<td>81</td>
</tr>
<tr>
<td>District X Year FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Month FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Temp& Precip</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Clustered robust standard errors at the district level in parentheses. Prod$_{ci}$ is measured in hundred sq kilometers. *** p < 0.01, ** p < 0.05, * p < 0.1

Robustness. Additional analysis in the online appendix shows that when combining both irrigated and rain-fed in a single measure the result is less precisely estimated, potentially driven by the fact that it is also capturing opium production (Table 18). Finally, the inclusion of lags shows that for total attacks and casualties, the effect is driven by the contemporaneous onset of harvest. However, in the case of total attacks and asymmetric ones, we do observe a reduction in the intensity of attacks a month prior to the harvest, suggesting some anticipation effects prior to the actual onset of harvest, in this case.

5 Conclusion

This paper has examined how seasonal variation in labor demand has a negative effect on the intensity of violence. In Iraq, Pakistan, and Afghanistan, the number of attacks is lower during harvest. Such a reduction in violent attacks ranges between 11 and 25% for
all cases when evaluated at the average share of monthly attacks and the average amount of wheat cultivated in district. Results are robust to excluding regions that are not crop producers, a wide array of fixed effect variables, and do not appear to be driven by alternative explanations such as the weather, religious festivities, within-year variation in occupations, or seasonal migration. Consistent with our interpretation that harvest affects local labor markets and conflict, we find that during these months agricultural workers tend to have higher employment rates non-agricultural workers in Iraq. However, the way that attacks are coded seems important: although there is some evidence of seasonality using the GTD in Iraq and BFRS in Pakistan, estimated coefficients are usually smaller and/or less precisely estimated.

In terms of policy implications, care should be taken into interpreting our results for the opportunity cost mechanism as evidence in favor of employment programs or permanent forms of development aid. In theory, the problem is that those policy schemes may have unintended consequences if highly persistent. For example, a permanent wage or employment subsidy scheme may mean that households are wealthy enough to devote time to fighting for causes they care about, or are less likely to provide information to counter-insurgency forces. Or, they may encourage people to fight in order to capture the rents from these schemes. Similarly, permanent changes in productivity (due to foreign or development aid) may have a reduced effect of zero on violence, as first mentioned in Fearon (2008).

However, it might be possible to design more sophisticated policies which increase the opportunity cost of violence without increasing either consumption or the value of winning. For example, reducing food and energy subsidies (which are pervasive in regions prone to conflict) and using the money for an employment subsidy would have little effect on the marginal utility of consumption but would increase the incentive to work rather than fight. Funding employment schemes by local taxes would have a similar effect. Making employment subsidies conditional on a successful counterinsurgency means they would not affect the value of winning. These are just ideas: a thorough assessment would be an interesting area for future research. An online appendix is available at https://sites.google.com/site/jennyguardado/.
References

